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Abstract—This paper presents an end-to-end 3D registration
algorithm for relative navigation between known objects based
on a point-to-CAD iterative closest point (ICP) principle. The
objective of this method is to take in a measured point cloud
extracted from a depth or disparity map – such as the ones
obtained from stereo cameras, time-of-flight cameras, LiDARs,
or depth from defocus sensors – and calculate the rigid body
transformation that best aligns the measured data with a cor-
responding 3D CAD model. By leveraging the geometric infor-
mation encoded into stereolithography (STL) files, it is sought to
address the computational intractability imposed by the naı̈ve
generation of dense target point clouds solely based on the
target’s known surface. To this end, the proposed approach
computes a bijective projection onto the known triangular mesh
to obtain a target point cloud with which to use ICP techniques
for incremental alignment; the projection step is then carried
on recursively until the convergence criteria are met, yielding a
relative 6DOF pose between the two objects to be used within the
estimation pipeline. Demonstrations of the algorithm are pre-
sented using simulated datasets; results include time complexity
analyses for real-time operation cases, performance variation
assessments with respect to CAD model complexity, and sensitiv-
ity analysis for determining the tolerance to distinct noise levels
and spurious measurements. The design and implementation
of the algorithm makes use of the open-source Point Cloud
Library, and access to its source code is included within this
work.
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1. INTRODUCTION
Close proximity operations and relative navigation maneu-
vers are an essential component of future space missions,
including on-orbit servicing, in-space robotic assembly, and
orbital debris removal [1], [2]. To successfully and au-
tonomously carry out such tasks, relative state estimation
between all operating agents is paramount. Within this
estimation pipeline, depth sensing becomes a crucial ability
regarding the acquisition of information with which inference
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Government sponsorship acknowledged.

is to be performed [3]. Thus, given the increasing interest
and use of geometric representations for relative estimation
techniques – be it through active methods such as LiDAR [4],
or passive approaches such as stereo vision [5] – this work
presents an end-to-end 3D registration algorithm for relative
navigation between known objects, based on a point-to-CAD
iterative closest point (ICP) principle.

Geometric registration is defined as the act of associating
distinct sets of collected data into one common frame of
reference by minimizing the alignment error between pairs
of such sets [6]. The sets of data being cosidered by this
work involve the three-dimensional depth information of the
observed object acquired by the inspecting satellite, e.g., the
sets of point clouds being acquired by the spacecraft’s sensor
suite at each time step.

The scenarios herein considered involve an inspector satellite
equipped with a 3D sensor – such as a stereo camera, time-of-
flight camera, etc. – and a target object with a known three-
dimensional structure. The output of the 3D sensor is taken
to be a depth-based map, such as a disparity map or a depth
map, which can then be used to reproject a point cloud into
3D space. With respect to the a priori structure information, it
is likely for this to be easily obtainable due to the meticulous
nature of space operations [7], in which spacecraft designs
are thoroughly analyzed and reviewed, and from which a
coarse CAD model can provide the warranted information.
Depending on the scenario to be considered, the inspected
object can represent either active or passive spacecraft to be
serviced, a component of an in-space assembly process, or
space debris to be deorbited.

2. BACKGROUND AND RELATED WORK
The use of registration algorithms within the robotics field
was originally proposed a couple of decades ago, mainly to
address visual navigation and robot vision problems [8]. To
date, the objective and problem formulation of such algo-
rithms remain, at a high level, mostly unchanged.

Taking into account a source and a target point cloud, the
objective consists in finding the transformation T between
the two that minimizes the distance between pairs of points.
In this case, point clouds correspond to sets of geometric data
of the form

A
X = {xi ∶ xi ∈ IR

3
∀ i ∈ [1,⋯,N]} , (1)

where N indicates the number of set elements, or points, in
the point cloud, whose 3D coordinates are expressed with
respect to coordinate frame A. Thus, with A

X and B
Y as

target and source point clouds, the problem formulation can
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be expressed as finding

A
BT∗

= argmin
T

d (
A
BT(

B
Y),AX ) , (2)

where the sought transformation is of the form A
BT =

[
R t
0T 1

] , with R ∈ SO(3) and t ∈ IR3 representing the

relative rotation and translation from frame B to frame A,
and the function d(⋅, ⋅) denotes the alignment error between
point clouds as d (

A
Y,AX ) = ∑

N
i=1 ∣∣ yi − xi ∣∣2.

The most common algorithm family employed to solve such
problems is that of Iterative Closest Point (ICP) methods [9].
For problems fitting the aforementioned formulation, i.e.,
those in which the correspondence between points in both
sets is available, the point-to-point ICP algorithm can be
employed [10]. Nevertheless, depending on the problem at
hand, the target point clouds cannot always be represented
as sets of 3D points, therefore, multiple types of ICP variants
have arisen: point-to-line ICP [11], point-to-surface ICP [12],
point-to-curve ICP, amongst others [6].

In the scenarios herein considered, after acquiring a sample
point cloud of the observed object, of which a CAD model
(known 3D structure) is available, an ICP variant of the type
point-to-CAD is warranted for addressing the registration
problem, since no specific target point cloud is initially
available. Previous work pertaining such a technique has
been carried out, in which point clouds obtained from LiDAR
scans are aligned to an initial target point cloud obtained from
a CAD model, with the aid of additional sensor information
(IMU data) and a Kalman filter [13], [14]. Nonetheless, no
specific methodologies for constructing a target point cloud
from CAD models are discussed.

This aformentioned issue is considered in [15], and a method-
ology based on STL (STereo Lithography) CAD models is
proposed. The work here presented builds on top of this
strategy, adapting it to account for the nature of working
with depth-based reprojected point clouds, whose size and
shape tend to be quite irregular due to the fact that they are
highly depdendent on the quality of the scene and the vantage
point of the inspector satllite; that is, whenever an object is
inspected from afar, a small point cloud is obtained, whereas
when the observed object encompasses a sizeable portion of
the inspector’s field of view, the obtained point cloud is much
larger in size.

Similarily, the proposed strategy makes use of STL files and
its encoded geometric information in order to address the
computational intractability imposed by the naı̈ve generation
of dense target point clouds solely based on the target’s
known surface, as proposed in [15]. Stereolithography files
describe the surface geometry of a 3D object Ω as a set
{Υ,Φ}, in which Υ represents the set of all ”N” surface
vertices υi ∈ Υ, and Φ the mesh of all ”M” triangular poly-
gons φj ∈ Φ, with i ∈ [1, . . . ,N] and j ∈ [1, . . . ,M] [16].
Two such sample files are shown in Figure 1.

3. PROBLEM FORMULATION
A depiction of the scenario to be considered is shown in
Fig. 2, in which an inspector satellite – assummed static and
positioned at the origin of the world coordinate frame W –
passively inpsects a resident space object. At each time step,
the 3D depth sensor on-board the inspector satellite outputs a

(a) simple STL (b) complex STL

Figure 1. An STL file of a cube (a) with N = 8 vertices
and M = 12 triangular polygons, with dimensions of 1m×

1m × 1m = 1m3. A more complex STL model is shown in
(b), withN = 66,201 vertices andM = 149,726 triangular
polygons.

depth-based map M ∈ IRp×q . This depth-based map is rep-
resented as a two-dimensional matrix whose mij ∈ IR

+ value
represents the depth at that corresponding location/pixel, ∀i ∈
[1, . . . , p] and ∀j ∈ [1, . . . , q].

Bt
x

zy

W

BWknown 3D
structure

sensor

Bt+1

Bt+2

observed object

(CAD)

(as point cloud)

depth

Figure 2. Pictorial depiction of the problem formulation.
As shown in the image, the depth sensor’s coordinate
frame is aligned with the world coordinate frame W ;
additionally, the body frame B of the projected CAD
model, which is the object with which the registration
takes place, is also aligned with the coordinate frame W .
At time step t, the inspector satellite observes the target
object and its body frame Bt as a point cloud BtX . The
objective is then to estimate the relative transformation
W
Bt

T between frames Bt and W .

By making use of the point cloud BtX computed from its
corresponding depth map Mt, the underlying problem then
becomes the calculation of the 6DOF relative transformation
W
Bt
T between the world frame and the target object’s current

frame. By doing so, a pose estimate measurement for feeding
into the inspector’s estimation pipeline is able to be obtained,
enabling proximity operation maneuvers between the two
objects.

4. APPROACH
The structure of the proposed algorithm to compute the
relative transformation between the two objects is composed
of five main steps: i) preprocessing step, in which filters are
used to add information to the 3D object Ω; ii) reprojection
step, in which the initial 3D source point cloud is computed;
iii) target point cloud step, in which the CAD model is utilized
to compute a target point cloud; iv) registration step, in which
ICP methods are employed to incrementally align the source
and target point clouds; and v) recursion, in which steps iii)
and iv) are looped until the convergence criteria are met.
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The resulting algorithm is summarized in Algorithm 1, and
a detailed explanation is given in the following subsections.

Algorithm 1 Point-to-STL Registration

1: procedure GET6DOFPOSE(Mt,Ω)
2: Precompute surface normals from {Υ,Φ}
3: Setup k-d trees data structure
4: BtX ← reproject depth-based map Mt

5: W
Bt
T ← {∅}

6: error ←∞
7: while error > εd do
8: W

X ← {∅}

9: for each xi ∈
BtX do

10: kNeΥ ← find xi neighbors
11: Φ′

← get interesting polygons from kNeΥ

12: ΠΦ′ ← {∅}

13: for each φz ∈ Φ′ do
14: πΦ ← projection of xi onto φz
15: ΠΦ′ ←ΠΦ′ ∪πΦ

16: π∗
Φ ←minπ ΠΦ′

17: W
X ←

W
X ∪π∗

Φ

18: W
Bt

T,BtX ← ICP(WX ,BtX )

19: W
Bt
T ←

W
Bt
T ∪

W
Bt

T

20: error ← 1
p
d (

W
Bt

T(
BtX ),WX )

21:
W

Bt
T̂∗ ←∏i

i
i−1T,∀T ∈

W
Bt
T

22: return
W

Bt
T̂∗

i) Preprocessing

The preprocessing is to be performed only once for each em-
ployed CAD model, and consists in precomputing the normal
vector corresponding to each triangular mesh (Fig. 3a), as
well as in arranging the model’s vertices into a k-d tree data
structure, which allows for efficient spatial searches along the
vertex set Υ of the STL shape (Fig. 3b).

(a) surface normals (b) geometric data structure

Figure 3. Preprocessing step depicting the two operations
to be carried out upon each utilized CAD model: (a) nor-
mal vector calculation for each triangular polygon, and
(b) a k-d tree data structure for efficient vertex search.

ii) Map Reprojection Step

In order to obtain the initial source point cloud at each time
step, the depth-based map values need to be projected into 3D
space to obtain BtX ; for camera-based sensor information,
the geometry of similar triangles and a pinhole camera model
can be employed to obtain the following set of equations

Xij = (i − pi) ⋅
mij

f
, Yij = (j − pj) ⋅

mij

f
, Zij = mij (3)

for a depth map Mt, where the reprojected point xk =

(Xij , Yij , Zij) is to be added to the point cloud BtX , the pair
of points (pi, pj) represent the camera’s principal point coor-
dinates, and f its focal length. A similar set of reprojection
equations can be utilized whenever Mt denotes a disparity
map obtained from stereo cameras.

iii) Compute Target Point Cloud

The objective of this step is to compute a bijective projection
of the source point cloud BtX onto the known triangular mesh
Φ to obtain a target point cloud W

X with which to use ICP
techniques for incremental alignment. In order to do so, it
is necessary to calculate the best projection of xi onto the
CAD’s mesh Φ to obtain π∗

Φ(xi), iterating over every xi ∈
BtX . The proposed process for achieving this consists of the
following series of steps.

Find k-nearest neighbors of xi in the vertex set Υ – Using
the precomputed k-d tree structure, the set

kNeΥ(xi) = {υj ∶ d(υj ,xi) ≤ d(υq,xi),∀υq ∈ Υ} ,

can be efficiently computed, for i ∈ [1, . . . , k], q ≠ i.

Retrieve the interesting polygons – A subset Φ′
⊂ Φ of

polygons that contain as a vertex at least one of the k-
nearest neighbors of xi is to be calculated. That is, using
the precomputed data structure for fast access, getting the set

Φ′
= {φz = (υi,υj ,υl) ∈ Φ ∶ υ⋅ ∈ kNeΥ(xi),∀φz ∈ Φ} .

Compute projection of xi onto each polygon φz ∈ Φ′ –
First, by making use of the precomputed surface normals,
a projection onto the plane defined by φz is calculated. By
means of barycentric coordinates, the projection is to be
ensured to lie within the triangular mesh. Subsequently,
the projected point πφz

(xi) is added onto the projection set
Πφz

.

Choose best projection – From the projection set ΠΦ′ , the
best projected point π∗

Φ(xi), i.e., the one with the shortest
Euclidean distance with respect to xi, is chosen and added
onto the the target point cloud W

X .

iv) Registration Step

After iterating over every element in the source point cloud,
the bijective projection W

X is set as the ICP’s target point
cloud. Given the fact that no correspondance problem
between the two point clouds is present, traditional point-
to-point Iterative Closest Point methods are employed for
incremental alignment [17]. After running the ICP methods,
a transformation estimate

W

Bt
T̂ between the two point clouds

is obtained.

v) Recursion

As it can be anticipated, the target point cloud W
X built in

step iii) is not necessarily the approriate target point cloud
for being able to fully register the initial source point cloud
and the CAD model’s surface. This problem is shown in
Figure 4b), in which the computed target point cloud can be
seen only spanning one side of the model’s surface.

To overcome this issue, a recursion over steps iii) and iv) is
to be carried out. By doing so, once the point-to-point ICP
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a) b) c)

i)h)g)f)e)d)

Figure 4. Registration sequence example: a) initial conditions are shown, with the source point cloud BtX 0 shown in
red; b) the computation of the target point cloud W

X 0 (blue) is showcased, in which the bijective projection onto the
CAD’s surface, for each xi ∈

BtX 0, is denoted by a projection line; c) resulting source point cloud BtX 1 after running
ICP(

W
X 0,

BtX 0); d) start of the second iteration of the algorithm, in which BtX 1 (red) is used to project the second
target point cloud W

X 1 onto the mesh Φ; e) registration via ICP(
W
X 1,

BtX 1), resulting in BtX 2 (red); f) projection
step for obtaining W

X 2; g) ICP step resulting in BtX 3; h) subsequent source point cloud BtX 4; i) final result, in which
the projected cloud (blue) and the source cloud (red) are entirely overlapped with the ground truth values (shown in
green).

in the registration step arrives at a local minimum, a new
target point cloud W

X 1 is computed by taking into account
the modified position of the source point cloud. This newly
computed target point cloud is then passed to the ICP method
and is set as a new objective. This is repeated as many times
as desired, or until reaching certain stoppage criteria.

Algorithm convergence is assummed any time the value
obtained after computing the error between the source and
target point clouds using the current transformation estimate
W

Bt
T̂ falls below a chosen threshold εd, i.e.,

d(
W

Bt
T̂(

BtX ),WX ) ≤ εd.

Additionally, stoppage conditions are put in place to identify
problems such as incorrect convergence to local minima by
assessing the Frobenius norm of the difference between two
subsequent transformations.

5. RESULTS AND DISCUSSION
Implementation

The proposed algorithm was implemented in C++ using the
open-source Point Cloud Library (PCL) [18], mostly for its
visualization support and its built-in Iterative Closest Point
methods. All images were produced via the VTK library, and
the employed depth and disparity-based maps, along with its
corresponding point clouds, were produced with the help of
Blender [19], an open-source 3D computer graphics software.
All tests herein reported were conducted using an Intel Xeon
E3-1505M 2.8 GHz laptop with 64 GB of available RAM.

Test Cases

To showcase the results for each step, a sample registration
procedure using a small CAD model is presented. Using the
STL file shown in Figure 1a, an initial and noiseless source
point cloud with 5,000 elements is sampled along its surface,
and a random rigid body transformation – which acts as a
ground truth for the experiment – is applied to all points. The
sequence of steps is depicted in Figure 4.

In order to assess the performance of the registration al-
gorithm’s final pose estimate, the average point disparity
between two clouds is calculated as

η =
1

p
⋅ d(

W

Bt
T̂∗

(
BtX 0),

W
XG) , (4)

where p denotes the number of points in the point cloud, and
W
XG represents the ground truth point cloud obtained by

sampling the surface of the CAD model. For the particular set
of examples similar to the one shown in Figure 4, a desired
accuracy of ηd = 1e−5 m/pointwas chosen. Such threshold
was reached at an average of 19 iterations, with an average
runtime of 30.28 seconds.

A more challenging registration example is shown in Fig-
ure 5, in which a CAD model with N = 2,689 vertices
and a triangular mesh with M = 5,374 polygons is em-
ployed. An initial and noiseless ground truth point cloud
W
XG of 5,000 elements is sampled from its surface, and

a random rigid body transformation is applied in order to
set the registration algorithm’s initial conditions (resulting in
the black point cloud shown in Fig. 5a). The same desired
accuracy (ηd = 1e−5 m/point) and stopping conditions
used for the previous example are chosen. It’s worth noting
that even though the same level of accuracy was able to be
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iter: 4iter: 0 iter: 1 iter: 6 iter: 9

a) b) d)c) e)

Figure 5. Registration sequence using Ω with N = 2,689 vertices and M = 5,374 polygons: a) initial conditions are
shown; b) resulting alignment after initial point cloud projection and ICP step; c) the source point cloud BtX 4 (shown
in red) starts to progressively rotate due to the projected target point cloud W

X 4’s alignment (blue). d) source point
cloud’s alignment almost complete; e) clear translation between previously shown step, in which the source point cloud
starts to incrementally move towards the model’s center of geometry.

obtained, the number of average iterations, as well as the
average required computation time for a full registration to be
performed, increased significantly: for this case, an average
of 29 iterations, paired with an average runtime of 133.37
seconds was obtained. It is worth mentioning that the scale
of the cube CAD model, which is of the order of 1m in
each direction, and the dimensions of the mock satellite CAD
model, with the span of the solar panels being around 3.5m,
also play a role in this observed performance difference.

As compared to the previous example, in which the inital
point cloud was significantly displaced from the CAD’s cen-
ter of geometry, the additonal example shown in Figure 6
features an initial point cloud with a more pronounced rota-
tion misalignment. Similarily, another significant difference
between the two scenarios is the complexity, in terms of
number of polygons, of the chosen CAD models; the latter
omits the addition of the antenna compoment, which, even
though appearing to be a rather simple element, drastically
increases the count of triangular meshes due to the curved
object. This is an important factor, since the resulting shape
for the example in Figure 6 contains N = 709 vertices and
M = 1,414 polygons, amounting to a much faster 6DOF pose
estimate calculation – runtime of 50.93 seconds – for the
same level of accuracy as before.

To assess the algorithm’s performance against inputs that
more closely represent the use of depth-based maps, segmen-
tation techniques were employed in order to sample point
clouds only along the triangular polygons visible from the
vantage point of a camera lens. An example of this is shown
in Figure 7, in which two appropriate 6DOF pose estimates
are achieved (same level of accuracy as in previous examples)
by means of incomplete point clouds, starting from a random
initial position: for Figure 7a), the average iterations needed
for convergence were ; for Figure 7b), an average of 9
iterations with a runtime of 29.89 seconds was necessary
for full registration. Overall, it was observed that for CAD
models with dimensions in the order of 10’s of meters, source
point clouds of 1e3 points in size were more than enough to
achieve reasonable accuracy levels.

The advantage of testing the proposed algorithm using a sam-
pling technique for generating the initial source point clouds
is the availability of ground truth for each scenario. To assess
the behaviour of the algorithm in a more representative case,
the disparity map shown in Figure 8 is used as an input to
the registration algorithm. An identical registration procedure
as the ones previously shown is carried out using disparity-
based point clouds, such as the one shown in Figure 8, in

iter: 0

iter: 4

iter: 23

a)

b)

c)

Figure 6. Similar example as the one shown in Figure 5,
with the main difference being the omission of the antenna
component on the CAD model; the sequence of images
shows the registration process, with the black point cloud
denoting the scenario’s initial source point cloud location
(black and red point clouds overlapping in a)). Subfigure
b) depicts an intermediate step in which the source point
cloud is slowly moving towards the geometric center of
the surface; in c), the registered state is shown (red
overlapping the green point cloud, which represents the
ground truth points).

a) b)

Figure 7. Two registration examples with incomplete
point clouds: initial conditions shown in black; ground
truth shown in green; final point cloud transformation
shown in red.
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lieu of sampling-based point clouds, which for the previously
shown examples were noiseless. The most important differ-
ence with respect to the algorithm’s performance between
the aforementioned two types of input information is the
success rate of the 6DOF pose estimate calculation. For
this particular example, convergence was able to be achieve
within reasonable time limits only after relaxing the desired
accuracy from 1e−5m/point to ηd = 5e−3m/point; an
average of 39 iterations with a runtime of 180.77 seconds
was obtained. The decrease in achievable accuracy comes
from the fact that the point clouds generated from the map
M are not noiseless, thus rendering flat surfaces to be quite
irregular (e.g., the ruffled surface shown in Figure 8). This
entails that perfect alignment cannot be achieved, since there
will always exist some slack between some points in the
source point cloud and the surface of the CAD model. For the
majority of such cases, the stopping conditions (the Frobenius
norm of the difference between the transformation matrices
of subsequent iterations falling below Fmin = 1e−4) were
triggered before being able to reach the desired accuracy.
Further discussion regarding this topic is given in the timing
analysis section.

a) b) c)

Figure 8. Depth-based information for registration pur-
poses: a) left stereo image of an inspected object; b)
disparity map with respect to the left stereo camera; c)
disparity map projected as a point cloud.

Timing Analysis

The results shown thus far raise an important topic regarding
the distinct trades to be made when employing point clouds
and registration methods for real-time operation; it is possible
to tradeoff a model’s accuracy (e.g., simplifying its shape)
for registration runtime, if lower levels of accuracy can be
tolerated. Thus, a runtime performance vs point cloud size
and CAD model complexity is shown in Figure 9.
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Figure 9. Processing time analysis for distinct CAD model
and point cloud sizes. Max processing time was set at
1,000s.

The distinct color curves represent registration cases employ-

ing CAD models with distinct levels of detail; STL files
that more coarsely describe an object, such as the blocky
ones in which curved segments are discretized into much
fewer components, tend to allow for much shorter registration
periods (smaller line slope). It can be seen that if very dense
point clouds are warranted, the use of complex CAD models
becomes prohibitively expensive, with registration time costs
quickly ramping up, and vice versa.

Therefore, it is interesting to analyze the complexity of
the algorithm’s steps with respect to the size of the inputs
chosen for the registration. Thus, the separate algorithm
steps can be characterized as following: the preprocessing
step i) is to be performed only once for each employed CAD
model, allowing for the ability to carry out such task offline,
hence having no impact on the real-time performance of
the algorithm; for each time step t taken, a ii) reprojection
step must be performed, which is a linear in the number of
elements inside the depth-based map, that is, of complexity
O(p×q). The calculation of the target point cloud, or step iii),
warrants the projection of each point in the point cloud onto
the mesh of the CAD model, thus being linear in the number
of elements inside the point cloud, O(n). For each element,
k-nearest neighbors need to be computed –O(n2/3+k) – and
afterwards, the interesting polygons need to be retrieved –
O(M). Projecting each point cloud point onto the mesh, and
subsequently finding the best one, is linearly dependent on
both n and k, O(nk), hence dominated by the specifications
of the input data. Ultimately, the algorithm’s time complexity
can be parameterized by the number of triangular meshes M ,
the number of interesting polygons k ⋅ b, with b acting as a
type of branching factor dependent upon the complexity of
the CAD model (to how many polygons can a single vertex
belong), and the number of points in the source point cloud
n. Overall, the current implementation loses the fractional
searching time granted by the kd-tree structure over n given
the way in which the search for interesting polygons is carried
out. To sum it up, the the algorithm’s complexity can be
approximated as O(n(M + nk)), with a quadratic cost with
respect to the size of the source point cloud.

6. CONCLUSION
The motivation and development of an algorithm for the
estimation of a 6DOF relative pose between an inspector
satellite, equipped with a 3D depth sensor, and a target object
using point clouds and registration methods was presented.
Simulation results of several demonstration cases using dis-
tinct types of inputs are presented. A coarse time complexity
analysis is carried out, and the approach’s advantages and
disadvatages are outlined.

Future work will focus on improving the algorithm’s perfor-
mance, as well as success rate, in order to enable real-time
close proximity operations and to include its output into the
spacecraft’s estimation pipeline in an online fashion. With the
capabilities shown by such an approach, additional research
avenues, such as object recognition tasks given a database of
known CAD models, are also open for exploration.
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